-
Sri Krishna Madireddy authored
Add support for generating sram.bin from DCC_SRAM.BIN With this NEW sram will call version 2 of DCC driver for parsing. Change-Id: If8012b1f38ba29daa5bdac2fd15820de51ea9cab
6c908018
ramdump.py 65.29 KiB
# Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 and
# only version 2 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
import sys
import re
import os
import struct
import gzip
import functools
import string
import random
import platform
import stat
from boards import get_supported_boards, get_supported_ids
from tempfile import NamedTemporaryFile
import gdbmi
from print_out import print_out_str
from mmu import Armv7MMU, Armv7LPAEMMU, Armv8MMU
import parser_util
import minidump_util
from importlib import import_module
FP = 11
SP = 13
LR = 14
PC = 15
# The smem code is very stable and unlikely to go away or be changed.
# Rather than go through the hassel of parsing the id through gdb,
# just hard code it
SMEM_HW_SW_BUILD_ID = 0x89
BUILD_ID_LENGTH = 32
first_mem_file_names = ['EBICS0.BIN',
'EBI1.BIN', 'DDRCS0.BIN', 'ebi1_cs0.bin', 'DDRCS0_0.BIN']
extra_mem_file_names = ['EBI1CS1.BIN', 'DDRCS1.BIN', 'ebi1_cs1.bin',
'DDRCS0_1.BIN', 'DDRCS1_0.BIN', 'DDRCS1_1.BIN',
'DDRCS1_2.BIN', 'DDRCS1_3.BIN', 'DDRCS1_4.BIN',
'DDRCS1_5.BIN']
DDR_FILE_NAMES = ['DDRCS0.BIN', 'DDRCS1.BIN', 'DDRCS0_0.BIN',
'DDRCS1_0.BIN', 'DDRCS0_1.BIN', 'DDRCS1_1.BIN']
OTHER_DUMP_FILE_NAMES = ['PIMEM.BIN', 'OCIMEM.BIN','md_shared_imem.BIN',
'md_smem_info.BIN']
RAM_FILE_NAMES = set(DDR_FILE_NAMES +
OTHER_DUMP_FILE_NAMES +
first_mem_file_names +
extra_mem_file_names)
class AutoDumpInfo(object):
priority = 0
def __init__(self, autodumpdir):
self.autodumpdir = autodumpdir
self.ebi_files = []
def parse(self):
for (filename, base_addr) in self._parse():
fullpath = os.path.join(self.autodumpdir, filename)
end = base_addr + os.path.getsize(fullpath) - 1
self.ebi_files.append((open(fullpath, 'rb'), base_addr, end, fullpath))
# sort by addr, DDR files first. The goal is for
# self.ebi_files[0] to be the DDR file with the lowest address.
self.ebi_files.sort(
key=lambda x: (os.path.basename(x[-1]) not in DDR_FILE_NAMES,
x[1]))
def _parse(self):
# Implementations should return an interable of (filename, base_addr)
raise NotImplementedError
class AutoDumpInfoCMM(AutoDumpInfo):
# Parses CMM scripts (like load.cmm)
def _parse(self):
filename = 'load.cmm'
if not os.path.exists(os.path.join(self.autodumpdir, filename)):
print_out_str('!!! AutoParse could not find load.cmm!')
return
with open(os.path.join(self.autodumpdir, filename)) as f:
for line in f.readlines():
words = line.split()
if len(words) == 4 and words[1] in RAM_FILE_NAMES:
fname = words[1]
start = int(words[2], 16)
yield fname, start
class AutoDumpInfoDumpInfoTXT(AutoDumpInfo):
# Parses dump_info.txt
priority = 1
def _parse(self):
filename = 'dump_info.txt'
if not os.path.exists(os.path.join(self.autodumpdir, filename)):
print_out_str('!!! AutoParse could not find dump_info.txt!')
return
with open(os.path.join(self.autodumpdir, filename)) as f:
for line in f.readlines():
words = line.split()
if not words or words[-1] not in RAM_FILE_NAMES:
continue
fname = words[-1]
start = int(words[1], 16)
size = int(words[2])
filesize = os.path.getsize(
os.path.join(self.autodumpdir, fname))
if size != filesize:
print_out_str(
("!!! Size of %s on disk (%d) doesn't match size " +
"from dump_info.txt (%d). Skipping...")
% (fname, filesize, size))
continue
yield fname, start
class RamDump():
"""The main interface to the RAM dump"""
class Unwinder ():
class Stackframe ():
def __init__(self, fp, sp, lr, pc):
self.fp = fp
self.sp = sp
self.lr = lr
self.pc = pc
class UnwindCtrlBlock ():
def __init__(self):
self.vrs = 16 * [0]
self.insn = 0
self.entries = -1
self.byte = -1
self.index = 0
def __init__(self, ramdump):
start = ramdump.address_of('__start_unwind_idx')
end = ramdump.address_of('__stop_unwind_idx')
self.ramdump = ramdump
if (start is None) or (end is None):
if ramdump.arm64:
self.unwind_frame = self.unwind_frame_generic64
else:
self.unwind_frame = self.unwind_frame_generic
return None
# addresses
self.unwind_frame = self.unwind_frame_tables
self.start_idx = start
self.stop_idx = end
self.unwind_table = []
i = 0
for addr in range(start, end, 8):
r = ramdump.read_string(addr, '<II')
if r is None:
break
(a, b) = r
self.unwind_table.append((a, b, start + 8 * i))
i += 1
ver = ramdump.version
if re.search('3.0.\d', ver) is not None:
self.search_idx = self.search_idx_3_0
else:
self.search_idx = self.search_idx_3_4
# index into the table
self.origin = self.unwind_find_origin()
def unwind_find_origin(self):
start = 0
stop = len(self.unwind_table)
while (start < stop):
mid = start + ((stop - start) >> 1)
if (self.unwind_table[mid][0] >= 0x40000000):
start = mid + 1
else:
stop = mid
return stop
def unwind_frame_generic64(self, frame):
fp = frame.fp
low = frame.sp
mask = (self.ramdump.thread_size) - 1
high = (low + mask) & (~mask)
# Ignore NON HLOS addresses and return from the function without
# unwinding the frame pointer. HLOS addresses are expected to be
# greater than or equal to page_offset. NON HLOS addresses have 1-1
# virtual to physical mapping and may not have physical addresses
# equal to or greater than page_offset anytime soon.
if (fp < low or fp > high or fp & 0xf or fp < self.ramdump.page_offset):
return
frame.sp = fp + 0x10
frame.fp = self.ramdump.read_word(fp)
frame.pc = self.ramdump.read_word(fp + 8)
return 0
def unwind_frame_generic(self, frame):
high = 0
fp = frame.fp
low = frame.sp
mask = (self.ramdump.thread_size) - 1
high = (low + mask) & (~mask) # ALIGN(low, THREAD_SIZE)
# /* check current frame pointer is within bounds */
if (fp < (low + 12) or fp + 4 >= high):
return -1
fp_is_at = self.ramdump.read_word(frame.fp - 12)
sp_is_at = self.ramdump.read_word(frame.fp - 8)
pc_is_at = self.ramdump.read_word(frame.fp - 4)
frame.fp = fp_is_at
frame.sp = sp_is_at
frame.pc = pc_is_at
return 0
def walk_stackframe_generic(self, frame):
while True:
symname = self.ramdump.addr_to_symbol(frame.pc)
print_out_str(symname)
ret = self.unwind_frame_generic(frame)
if ret < 0:
break
def unwind_backtrace_generic(self, sp, fp, pc):
frame = self.Stackframe()
frame.fp = fp
frame.pc = pc
frame.sp = sp
walk_stackframe_generic(frame)
def search_idx_3_4(self, addr):
start = 0
stop = len(self.unwind_table)
orig = addr
if (addr < self.start_idx):
stop = self.origin
else:
start = self.origin
if (start >= stop):
return None
addr = (addr - self.unwind_table[start][2]) & 0x7fffffff
while (start < (stop - 1)):
mid = start + ((stop - start) >> 1)
dif = (self.unwind_table[mid][2]
- self.unwind_table[start][2])
if ((addr - dif) < self.unwind_table[mid][0]):
stop = mid
else:
addr = addr - dif
start = mid
if self.unwind_table[start][0] <= addr:
return self.unwind_table[start]
else:
return None
def search_idx_3_0(self, addr):
first = 0
last = len(self.unwind_table)
while (first < last - 1):
mid = first + ((last - first + 1) >> 1)
if (addr < self.unwind_table[mid][0]):
last = mid
else:
first = mid
return self.unwind_table[first]
def unwind_get_byte(self, ctrl):
if (ctrl.entries <= 0):
print_out_str('unwind: Corrupt unwind table')
return 0
val = self.ramdump.read_word(ctrl.insn)
ret = (val >> (ctrl.byte * 8)) & 0xff
if (ctrl.byte == 0):
ctrl.insn += 4
ctrl.entries -= 1
ctrl.byte = 3
else:
ctrl.byte -= 1
return ret
def unwind_exec_insn(self, ctrl):
insn = self.unwind_get_byte(ctrl)
if ((insn & 0xc0) == 0x00):
ctrl.vrs[SP] += ((insn & 0x3f) << 2) + 4
elif ((insn & 0xc0) == 0x40):
ctrl.vrs[SP] -= ((insn & 0x3f) << 2) + 4
elif ((insn & 0xf0) == 0x80):
vsp = ctrl.vrs[SP]
reg = 4
insn = (insn << 8) | self.unwind_get_byte(ctrl)
mask = insn & 0x0fff
if (mask == 0):
print_out_str("unwind: 'Refuse to unwind' instruction")
return -1
# pop R4-R15 according to mask */
load_sp = mask & (1 << (13 - 4))
while (mask):
if (mask & 1):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if ctrl.vrs[reg] is None:
return -1
vsp += 4
mask >>= 1
reg += 1
if not load_sp:
ctrl.vrs[SP] = vsp
elif ((insn & 0xf0) == 0x90 and (insn & 0x0d) != 0x0d):
ctrl.vrs[SP] = ctrl.vrs[insn & 0x0f]
elif ((insn & 0xf0) == 0xa0):
vsp = ctrl.vrs[SP]
a = list(range(4, 4 + (insn & 7)))
a.append(4 + (insn & 7))
# pop R4-R[4+bbb] */
for reg in (a):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if ctrl.vrs[reg] is None:
return -1
vsp += 4
if (insn & 0x80):
ctrl.vrs[14] = self.ramdump.read_word(vsp)
if ctrl.vrs[14] is None:
return -1
vsp += 4
ctrl.vrs[SP] = vsp
elif (insn == 0xb0):
if (ctrl.vrs[PC] == 0):
ctrl.vrs[PC] = ctrl.vrs[LR]
ctrl.entries = 0
elif (insn == 0xb1):
mask = self.unwind_get_byte(ctrl)
vsp = ctrl.vrs[SP]
reg = 0
if (mask == 0 or mask & 0xf0):
print_out_str('unwind: Spare encoding')
return -1
# pop R0-R3 according to mask
while mask:
if (mask & 1):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if ctrl.vrs[reg] is None:
return -1
vsp += 4
mask >>= 1
reg += 1
ctrl.vrs[SP] = vsp
elif (insn == 0xb2):
uleb128 = self.unwind_get_byte(ctrl)
ctrl.vrs[SP] += 0x204 + (uleb128 << 2)
else:
print_out_str('unwind: Unhandled instruction')
return -1
return 0
def prel31_to_addr(self, addr):
value = self.ramdump.read_word(addr)
# offset = (value << 1) >> 1
# C wants this sign extended. Python doesn't do that.
# Sign extend manually.
if (value & 0x40000000):
offset = value | 0x80000000
else:
offset = value
# This addition relies on integer overflow
# Emulate this behavior
temp = addr + offset
return (temp & 0xffffffff) + ((temp >> 32) & 0xffffffff)
def unwind_frame_tables(self, frame):
low = frame.sp
high = ((low + (self.ramdump.thread_size - 1)) & \
~(self.ramdump.thread_size - 1)) + self.ramdump.thread_size
idx = self.search_idx(frame.pc)
if (idx is None):
return -1
ctrl = self.UnwindCtrlBlock()
ctrl.vrs[FP] = frame.fp
ctrl.vrs[SP] = frame.sp
ctrl.vrs[LR] = frame.lr
ctrl.vrs[PC] = 0
if (idx[1] == 1):
return -1
elif ((idx[1] & 0x80000000) == 0):
ctrl.insn = self.prel31_to_addr(idx[2] + 4)
elif (idx[1] & 0xff000000) == 0x80000000:
ctrl.insn = idx[2] + 4
else:
print_out_str('not supported')
return -1
val = self.ramdump.read_word(ctrl.insn)
if ((val & 0xff000000) == 0x80000000):
ctrl.byte = 2
ctrl.entries = 1
elif ((val & 0xff000000) == 0x81000000):
ctrl.byte = 1
ctrl.entries = 1 + ((val & 0x00ff0000) >> 16)
else:
return -1
while (ctrl.entries > 0):
urc = self.unwind_exec_insn(ctrl)
if (urc < 0):
return urc
if (ctrl.vrs[SP] < low or ctrl.vrs[SP] >= high):
return -1
if (ctrl.vrs[PC] == 0):
ctrl.vrs[PC] = ctrl.vrs[LR]
# check for infinite loop */
if (frame.pc == ctrl.vrs[PC]):
return -1
frame.fp = ctrl.vrs[FP]
frame.sp = ctrl.vrs[SP]
frame.lr = ctrl.vrs[LR]
frame.pc = ctrl.vrs[PC]
return 0
def unwind_backtrace(self, sp, fp, pc, lr, extra_str='',
out_file=None):
offset = 0
frame = self.Stackframe(fp, sp, lr, pc)
frame.fp = fp
frame.sp = sp
frame.lr = lr
frame.pc = pc
while True:
where = frame.pc
offset = 0
if frame.pc is None:
break
r = self.ramdump.unwind_lookup(frame.pc)
if r is None:
symname = 'UNKNOWN'
offset = 0x0
else:
symname, offset = r
pstring = (
extra_str + '[<{0:x}>] {1}+0x{2:x}'.format(frame.pc, symname, offset))
if out_file:
out_file.write(pstring + '\n')
else:
print_out_str(pstring)
urc = self.unwind_frame(frame)
if urc < 0:
break
def __init__(self, options, nm_path, gdb_path, objdump_path):
self.ebi_files = []
self.ebi_files_minidump = []
self.ebi_pa_name_map = {}
self.phys_offset = None
self.kaslr_offset = options.kaslr_offset
self.tz_start = 0
self.ebi_start = 0
self.cpu_type = None
self.hw_id = options.force_hardware or None
self.hw_version = options.force_hardware_version or None
self.offset_table = []
self.vmlinux = options.vmlinux
self.nm_path = nm_path
self.gdb_path = gdb_path
self.objdump_path = objdump_path
self.outdir = options.outdir
self.imem_fname = None
self.gdbmi = gdbmi.GdbMI(self.gdb_path, self.vmlinux,
self.kaslr_offset or 0)
self.gdbmi.open()
self.arm64 = options.arm64
self.page_offset = 0xc0000000
self.thread_size = 8192
self.qtf_path = options.qtf_path
self.qtf = options.qtf
self.skip_qdss_bin = options.skip_qdss_bin
self.dcc = False
self.t32_host_system = options.t32_host_system or None
self.ipc_log_test = options.ipc_test
self.ipc_log_skip = options.ipc_skip
self.ipc_log_debug = options.ipc_debug
self.ipc_log_help = options.ipc_help
self.use_stdout = options.stdout
self.kernel_version = (0, 0, 0)
self.minidump = options.minidump
self.elffile = None
self.ram_elf_file = None
if self.minidump:
try:
mod = import_module('elftools.elf.elffile')
ELFFile = mod.ELFFile
StringTableSection = mod.StringTableSection
mod = import_module('elftools.common.py3compat')
bytes2str = mod.bytes2str
except ImportError:
print "Oops, missing required library for minidump. Check README"
sys.exit(1)
self.ram_addr = options.ram_addr
if options.ram_addr is not None:
# TODO sanity check to make sure the memory regions don't overlap
for file_path, start, end in options.ram_addr:
fd = open(file_path, 'rb')
if not fd:
print_out_str(
'Could not open {0}. Will not be part of dump'.format(file_path))
continue
self.ebi_files.append((fd, start, end, file_path))
elif not options.minidump:
if not self.auto_parse(options.autodump):
return None
if options.minidump:
file_path = options.ram_elf_addr
self.ram_elf_file = file_path
fd = open(file_path, 'rb')
self.elffile = ELFFile(fd)
for idx, s in enumerate(self.elffile.iter_segments()):
pa = int(s['p_paddr'])
va = int(s['p_vaddr'])
size = int(s['p_filesz'])
end_addr = pa + size
for section in self.elffile.iter_sections():
if (not section.is_null() and
s.section_in_segment(section)):
self.ebi_pa_name_map[pa] = section.name
self.ebi_files_minidump.append((idx, pa, end_addr, va,size))
if options.minidump:
if self.ebi_start == 0:
self.ebi_start = self.ebi_files_minidump[0][1]
else:
if self.ebi_start == 0:
self.ebi_start = self.ebi_files[0][1]
if self.phys_offset is None:
self.get_hw_id()
if self.kaslr_offset is None:
self.get_kaslr_offset()
if self.kaslr_offset is not None:
self.gdbmi.kaslr_offset = self.kaslr_offset
if options.phys_offset is not None:
print_out_str(
'[!!!] Phys offset was set to {0:x}'.format(\
options.phys_offset))
self.phys_offset = options.phys_offset
self.wlan = options.wlan
self.lookup_table = []
self.config = []
self.config_dict = {}
if self.arm64:
self.page_offset = 0xffffffc000000000
self.thread_size = 16384
if options.page_offset is not None:
print_out_str(
'[!!!] Page offset was set to {0:x}'.format(page_offset))
self.page_offset = options.page_offset
self.setup_symbol_tables()
va_bits = 39
modules_vsize = 0x08000000
self.va_start = (0xffffffffffffffff << va_bits) \
& 0xffffffffffffffff
if self.address_of("kasan_init") is None:
self.kasan_shadow_size = 0
else:
self.kasan_shadow_size = 1 << (va_bits - 3)
self.kimage_vaddr = self.va_start + self.kasan_shadow_size + \
modules_vsize
if self.kaslr_offset is not None:
self.kimage_vaddr = self.kimage_vaddr + self.kaslr_offset
self.modules_end = self.page_offset
self.kimage_voffset = self.address_of("kimage_voffset")
if self.kimage_voffset is not None:
self.kimage_voffset = self.kimage_vaddr - self.phys_offset
self.modules_end = self.kimage_vaddr
print_out_str("The kimage_voffset extracted is: {:x}".format(self.kimage_voffset))
# The address of swapper_pg_dir can be used to determine
# whether or not we're running with LPAE enabled since an
# extra 4k is needed for LPAE. If it's 0x5000 below
# PAGE_OFFSET + TEXT_OFFSET then we know we're using LPAE. For
# non-LPAE it should be 0x4000 below PAGE_OFFSET + TEXT_OFFSET
self.swapper_pg_dir_addr = self.address_of('swapper_pg_dir')
if self.swapper_pg_dir_addr is None:
print_out_str('!!! Could not get the swapper page directory!')
if not self.minidump:
print_out_str(
'!!! Your vmlinux is probably wrong for these dumps')
print_out_str('!!! Exiting now')
sys.exit(1)
stext = self.address_of('stext')
if self.kimage_voffset is None:
self.kernel_text_offset = stext - self.page_offset
else:
self.kernel_text_offset = stext - self.kimage_vaddr
pg_dir_size = self.kernel_text_offset + self.page_offset \
- self.swapper_pg_dir_addr
if self.arm64:
print_out_str('Using 64bit MMU')
self.mmu = Armv8MMU(self)
elif pg_dir_size == 0x4000:
print_out_str('Using non-LPAE MMU')
self.mmu = Armv7MMU(self)
elif pg_dir_size == 0x5000:
print_out_str('Using LPAE MMU')
text_offset = 0x8000
pg_dir_size = 0x5000 # 0x4000 for non-LPAE
swapper_pg_dir_addr = self.phys_offset + text_offset - pg_dir_size
# We deduce ttbr1 and ttbcr.t1sz based on the value of
# PAGE_OFFSET. This is based on v7_ttb_setup in
# arch/arm/mm/proc-v7-3level.S:
# * TTBR0/TTBR1 split (PAGE_OFFSET):
# * 0x40000000: T0SZ = 2, T1SZ = 0 (not used)
# * 0x80000000: T0SZ = 0, T1SZ = 1
# * 0xc0000000: T0SZ = 0, T1SZ = 2
if self.page_offset == 0x40000000:
t1sz = 0
elif self.page_offset == 0x80000000:
t1sz = 1
elif self.page_offset == 0xc0000000:
t1sz = 2
# need to fixup ttbr1 since we'll be skipping the
# first-level lookup (see v7_ttb_setup):
# /* PAGE_OFFSET == 0xc0000000, T1SZ == 2 */
# add \ttbr1, \ttbr1, #4096 * (1 + 3) @ only L2 used, skip
# pgd+3*pmd
swapper_pg_dir_addr += (4096 * (1 + 3))
else:
raise Exception(
'Invalid phys_offset for page_table_walk: 0x%x'
% self.page_offset)
self.mmu = Armv7LPAEMMU(self, swapper_pg_dir_addr, t1sz)
else:
print_out_str(
"!!! Couldn't determine whether or not we're using LPAE!")
print_out_str(
'!!! This is a BUG in the parser and should be reported.')
sys.exit(1)
if not self.get_version():
print_out_str('!!! Could not get the Linux version!')
print_out_str(
'!!! Your vmlinux is probably wrong for these dumps')
print_out_str('!!! Exiting now')
sys.exit(1)
if not self.minidump:
if not self.get_config():
print_out_str('!!! Could not get saved configuration')
print_out_str(
'!!! This is really bad and probably indicates RAM corruption')
print_out_str('!!! Some features may be disabled!')
self.unwind = self.Unwinder(self)
def __del__(self):
self.gdbmi.close()
def open_file(self, file_name, mode='wb'):
"""Open a file in the out directory.
Example:
>>> with self.ramdump.open_file('pizza.txt') as p:
p.write('Pizza is the best\\n')
"""
file_path = os.path.join(self.outdir, file_name)
f = None
try:
dir_path = os.path.dirname(file_path)
if not os.path.exists(dir_path) and 'w' in mode:
os.makedirs(dir_path)
f = open(file_path, mode)
except:
print_out_str('Could not open path {0}'.format(file_path))
print_out_str('Do you have write/read permissions on the path?')
sys.exit(1)
return f
def remove_file(self, file_name):
file_path = os.path.join(self.outdir, file_name)
try:
if (os.path.exists(file_path)):
os.remove(file_path)
except:
print_out_str('Could not remove file {0}'.format(file_path))
print_out_str('Do you have write/read permissions on the path?')
sys.exit(1)
def get_config(self):
kconfig_addr = self.address_of('kernel_config_data')
if kconfig_addr is None:
return
kconfig_size = self.sizeof('kernel_config_data')
# size includes magic, offset from it
kconfig_size = kconfig_size - 16 - 1
zconfig = NamedTemporaryFile(mode='wb', delete=False)
# kconfig data starts with magic 8 byte string, go past that
s = self.read_cstring(kconfig_addr, 8)
if s != 'IKCFG_ST':
return
kconfig_addr = kconfig_addr + 8
for i in range(0, kconfig_size):
val = self.read_byte(kconfig_addr + i)
zconfig.write(struct.pack('<B', val))
zconfig.close()
zconfig_in = gzip.open(zconfig.name, 'rb')
try:
t = zconfig_in.readlines()
except:
return False
zconfig_in.close()
os.remove(zconfig.name)
for l in t:
self.config.append(l.rstrip().decode('ascii', 'ignore'))
if not l.startswith('#') and l.strip() != '':
eql = l.find('=')
cfg = l[:eql]
val = l[eql+1:]
self.config_dict[cfg] = val.strip()
return True
def get_config_val(self, config):
"""Gets the value of a kernel config option.
Example:
>>> va_bits = int(dump.get_config_val("CONFIG_ARM64_VA_BITS"))
39
"""
return self.config_dict.get(config)
def is_config_defined(self, config):
s = config + '=y'
return s in self.config
def kernel_virt_to_phys(self, addr):
if self.minidump:
return minidump_util.minidump_virt_to_phys(self.ebi_files_minidump,addr)
else:
va_bits = 39
if self.kimage_voffset is None:
return addr - self.page_offset + self.phys_offset
else:
if addr & (1 << (va_bits - 1)):
return addr - self.page_offset + self.phys_offset
else:
return addr - (self.kimage_voffset)
def get_version(self):
banner_addr = self.address_of('linux_banner')
if banner_addr is not None:
banner_addr = self.kernel_virt_to_phys(banner_addr)
b = self.read_cstring(banner_addr, 256, False)
if b is None:
print_out_str('!!! Could not read banner address!')
return False
v = re.search('Linux version (\d{0,2}\.\d{0,2}\.\d{0,2})', b)
if v is None:
print_out_str('!!! Could not match version! {0}'.format(b))
return False
self.version = v.group(1)
match = re.search('(\d+)\.(\d+)\.(\d+)', self.version)
if match is not None:
self.kernel_version = tuple(map(int, match.groups()))
else:
print_out_str('!!! Could not extract version info! {0}'.format(self.version))
print_out_str('Linux Banner: ' + b.rstrip())
print_out_str('version = {0}'.format(self.version))
return True
else:
print_out_str('!!! Could not lookup banner address')
return False
def print_command_line(self):
command_addr = self.address_of('saved_command_line')
if command_addr is not None:
command_addr = self.read_word(command_addr)
b = self.read_cstring(command_addr, 2048)
if b is None:
print_out_str('!!! could not read saved command line address')
return False
print_out_str('Command Line: ' + b)
return True
else:
print_out_str('!!! Could not lookup saved command line address')
return False
def print_socinfo_minidump(self):
content_socinfo = None
boards = get_supported_boards()
for board in boards:
if self.hw_id == board.board_num:
content_socinfo = board.ram_start + board.smem_addr_buildinfo
break
sernum_offset = self.field_offset('struct socinfo_v10', 'serial_number')
if sernum_offset is None:
sernum_offset = self.field_offset('struct socinfo_v0_10', 'serial_number')
if sernum_offset is None:
print_out_str("No serial number information available")
return False
if content_socinfo:
addr_of_sernum = content_socinfo + sernum_offset
serial_number = self.read_u32(addr_of_sernum, False)
if serial_number is not None:
print_out_str('Serial number %s' % hex(serial_number))
return True
return False
return False
def print_socinfo(self):
content_socinfo = hex(self.read_pointer('socinfo'))
content_socinfo = content_socinfo.strip('L')
sernum_offset = self.field_offset('struct socinfo_v10', 'serial_number')
if sernum_offset is None:
sernum_offset = self.field_offset('struct socinfo_v0_10', 'serial_number')
if sernum_offset is None:
print_out_str("No serial number information available")
return False
addr_of_sernum = hex(int(content_socinfo, 16) + sernum_offset)
addr_of_sernum = addr_of_sernum.strip('L')
serial_number = self.read_u32(int(addr_of_sernum, 16))
if serial_number is not None:
print_out_str('Serial number %s' % hex(serial_number))
return True
return False
def auto_parse(self, file_path):
for cls in sorted(AutoDumpInfo.__subclasses__(),
key=lambda x: x.priority, reverse=True):
info = cls(file_path)
info.parse()
if info is not None and len(info.ebi_files) > 0:
self.ebi_files = info.ebi_files
self.phys_offset = self.ebi_files[0][1]
if self.get_hw_id():
for (f, start, end, filename) in self.ebi_files:
print_out_str('Adding {0} {1:x}--{2:x}'.format(
filename, start, end))
return True
self.ebi_files = None
return False
def create_t32_launcher(self):
out_path = os.path.abspath(self.outdir)
t32_host_system = self.t32_host_system or platform.system()
launch_config = open(out_path + '/t32_config.t32', 'wb')
launch_config.write('OS=\n')
launch_config.write('ID=T32_1000002\n')
if t32_host_system != 'Linux':
launch_config.write('TMP=C:\\TEMP\n')
launch_config.write('SYS=C:\\T32\n')
launch_config.write('HELP=C:\\T32\\pdf\n')
else:
launch_config.write('TMP=/tmp\n')
launch_config.write('SYS=/opt/t32\n')
launch_config.write('HELP=/opt/t32/pdf\n')
launch_config.write('\n')
launch_config.write('PBI=SIM\n')
launch_config.write('\n')
launch_config.write('SCREEN=\n')
if t32_host_system != 'Linux':
launch_config.write('FONT=SMALL\n')
else:
launch_config.write('FONT=LARGE\n')
launch_config.write('HEADER=Trace32-ScorpionSimulator\n')
launch_config.write('\n')
if t32_host_system != 'Linux':
launch_config.write('PRINTER=WINDOWS\n')
launch_config.write('\n')
launch_config.write('RCL=NETASSIST\n')
launch_config.write('PACKLEN=1024\n')
launch_config.write('PORT=%d\n' % random.randint(20000, 30000))
launch_config.write('\n')
launch_config.close()
startup_script = open(out_path + '/t32_startup_script.cmm', 'wb')
startup_script.write(('title \"' + out_path + '\"\n').encode('ascii', 'ignore'))
is_cortex_a53 = self.hw_id in ["8916", "8939", "8936"]
if self.arm64 and is_cortex_a53:
startup_script.write('sys.cpu CORTEXA53\n'.encode('ascii', 'ignore'))
else:
startup_script.write('sys.cpu {0}\n'.format(self.cpu_type).encode('ascii', 'ignore'))
startup_script.write('sys.up\n'.encode('ascii', 'ignore'))
for ram in self.ebi_files:
ebi_path = os.path.abspath(ram[3])
startup_script.write('data.load.binary {0} 0x{1:x}\n'.format(
ebi_path, ram[1]).encode('ascii', 'ignore'))
if self.minidump:
dload_ram_elf = 'data.load.elf {} /LOGLOAD /nosymbol\n'.format(self.ram_elf_file)
startup_script.write(dload_ram_elf.encode('ascii', 'ignore'))
if not self.minidump:
if self.arm64:
startup_script.write('Register.Set NS 1\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30201 %Quad 0x{0:x}\n'.format(
self.kernel_virt_to_phys(self.swapper_pg_dir_addr))
.encode('ascii', 'ignore'))
if is_cortex_a53:
startup_script.write('Data.Set SPR:0x30202 %Quad 0x00000012B5193519\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A20 %Quad 0x000000FF440C0400\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A30 %Quad 0x0000000000000000\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30100 %Quad 0x0000000034D5D91D\n'.encode('ascii', 'ignore'))
else:
startup_script.write('Data.Set SPR:0x30202 %Quad 0x00000032B5193519\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A20 %Quad 0x000000FF440C0400\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A30 %Quad 0x0000000000000000\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30100 %Quad 0x0000000004C5D93D\n'.encode('ascii', 'ignore'))
startup_script.write('Register.Set CPSR 0x3C5\n'.encode('ascii', 'ignore'))
startup_script.write('MMU.Delete\n'.encode('ascii', 'ignore'))
startup_script.write('MMU.SCAN PT 0xFFFFFF8000000000--0xFFFFFFFFFFFFFFFF\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.on\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.pt.list 0xffffff8000000000\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'PER.S.F C15:0x2 %L 0x{0:x}\n'.format(self.mmu.ttbr).encode('ascii', 'ignore'))
if isinstance(self.mmu, Armv7LPAEMMU):
# TTBR1. This gets setup once and never change again even if TTBR0
# changes
startup_script.write('PER.S.F C15:0x102 %L 0x{0:x}\n'.format(
self.mmu.ttbr + 0x4000).encode('ascii', 'ignore'))
# TTBCR with EAE and T1SZ set approprately
startup_script.write(
'PER.S.F C15:0x202 %L 0x80030000\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.on\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.scan\n'.encode('ascii', 'ignore'))
where = os.path.abspath(self.vmlinux)
if self.kaslr_offset is not None:
where += ' 0x{0:x}'.format(self.kaslr_offset)
dloadelf = 'data.load.elf {} /nocode\n'.format(where)
startup_script.write(dloadelf.encode('ascii', 'ignore'))
if t32_host_system != 'Linux':
if self.arm64:
startup_script.write(
'task.config C:\\T32\\demo\\arm64\\kernel\\linux\\linux-3.x\\linux3.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram C:\\T32\\demo\\arm64\\kernel\\linux\\linux-3.x\\linux.men\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'task.config c:\\t32\\demo\\arm\\kernel\\linux\\linux.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram c:\\t32\\demo\\arm\\kernel\\linux\\linux.men\n'.encode('ascii', 'ignore'))
else:
if self.arm64:
startup_script.write(
'task.config /opt/t32/demo/arm64/kernel/linux/linux-3.x/linux3.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram /opt/t32/demo/arm64/kernel/linux/linux-3.x/linux.men\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'task.config /opt/t32/demo/arm/kernel/linux/linux.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram /opt/t32/demo/arm/kernel/linux/linux.men\n'.encode('ascii', 'ignore'))
if not self.minidump:
startup_script.write('task.dtask\n'.encode('ascii', 'ignore'))
startup_script.write(
'v.v %ASCII %STRING linux_banner\n'.encode('ascii', 'ignore'))
if os.path.exists(out_path + '/regs_panic.cmm'):
startup_script.write(
'do {0}\n'.format(out_path + '/regs_panic.cmm').encode('ascii', 'ignore'))
elif os.path.exists(out_path + '/core0_regs.cmm'):
startup_script.write(
'do {0}\n'.format(out_path + '/core0_regs.cmm').encode('ascii', 'ignore'))
startup_script.close()
if t32_host_system != 'Linux':
launch_file = os.path.join(out_path, 'launch_t32.bat')
t32_bat = open(launch_file, 'wb')
if self.arm64:
t32_binary = 'C:\\T32\\bin\\windows64\\t32MARM64.exe'
elif is_cortex_a53:
t32_binary = 'C:\\T32\\bin\\windows64\\t32MARM.exe'
else:
t32_binary = 'c:\\t32\\t32MARM.exe'
t32_bat.write(('start '+ t32_binary + ' -c ' + out_path + '/t32_config.t32, ' +
out_path + '/t32_startup_script.cmm').encode('ascii', 'ignore'))
t32_bat.close()
else:
launch_file = os.path.join(out_path, 'launch_t32.sh')
t32_sh = open(launch_file, 'wb')
if self.arm64:
t32_binary = '/opt/t32/bin/pc_linux64/t32marm64-qt'
elif is_cortex_a53:
t32_binary = '/opt/t32/bin/pc_linux64/t32marm-qt'
else:
t32_binary = '/opt/t32/bin/pc_linux64/t32marm-qt'
t32_sh.write('#!/bin/sh\n\n')
t32_sh.write('{0} -c {1}/t32_config.t32, {1}/t32_startup_script.cmm &\n'.format(t32_binary, out_path))
t32_sh.close()
os.chmod(launch_file, stat.S_IRWXU)
print_out_str(
'--- Created a T32 Simulator launcher (run {})'.format(launch_file))
def read_tz_offset(self):
if self.tz_addr == 0:
print_out_str(
'No TZ address was given, cannot read the magic value!')
return None
else:
return self.read_word(self.tz_addr, False)
def get_kaslr_offset(self):
if(self.kaslr_addr is None):
print_out_str('!!!! Kaslr addr is not provided.')
else:
kaslr_magic = self.read_u32(self.kaslr_addr, False)
if kaslr_magic != 0xdead4ead:
print_out_str('!!!! Kaslr magic does not match.')
self.kaslr_offset = None
else:
self.kaslr_offset = self.read_u64(self.kaslr_addr + 4, False)
print_out_str("The kaslr_offset extracted is: " + str(hex(self.kaslr_offset)))
def get_hw_id(self, add_offset=True):
socinfo_format = -1
socinfo_id = -1
socinfo_version = 0
socinfo_build_id = 'DUMMY'
chosen_board = None
boards = get_supported_boards()
if (self.hw_id is None):
if not self.minidump:
heap_toc_offset = self.field_offset('struct smem_shared', 'heap_toc')
if heap_toc_offset is None:
print_out_str(
'!!!! Could not get a necessary offset for auto detection!')
print_out_str(
'!!!! Please check the gdb path which is used for offsets!')
print_out_str('!!!! Also check that the vmlinux is not stripped')
print_out_str('!!!! Exiting...')
sys.exit(1)
smem_heap_entry_size = self.sizeof('struct smem_heap_entry')
offset_offset = self.field_offset('struct smem_heap_entry', 'offset')
for board in boards:
if not self.minidump:
socinfo_start_addr = board.smem_addr + heap_toc_offset + smem_heap_entry_size * SMEM_HW_SW_BUILD_ID + offset_offset
else:
if hasattr(board, 'smem_addr_buildinfo'):
socinfo_start_addr = board.smem_addr_buildinfo
else:
continue
if add_offset:
socinfo_start_addr += board.ram_start
if not self.minidump:
soc_start = self.read_int(socinfo_start_addr, False)
if soc_start is None:
continue
socinfo_start = board.smem_addr + soc_start
if add_offset:
socinfo_start += board.ram_start
else:
socinfo_start = socinfo_start_addr
socinfo_id = self.read_int(socinfo_start + 4, False)
if socinfo_id != board.socid:
continue
socinfo_format = self.read_int(socinfo_start, False)
socinfo_version = self.read_int(socinfo_start + 8, False)
socinfo_build_id = self.read_cstring(
socinfo_start + 12, BUILD_ID_LENGTH, virtual=False)
chosen_board = board
break
if chosen_board is None:
print_out_str('!!!! Could not find hardware')
print_out_str("!!!! The SMEM didn't match anything")
print_out_str(
'!!!! You can use --force-hardware to use a specific set of values')
sys.exit(1)
else:
for board in boards:
if self.hw_id == board.board_num:
print_out_str(
'!!! Hardware id found! The socinfo values given are bogus')
print_out_str('!!! Proceed with caution!')
chosen_board = board
break
if chosen_board is None:
print_out_str(
'!!! A bogus hardware id was specified: {0}'.format(self.hw_id))
print_out_str('!!! Supported ids:')
for b in get_supported_ids():
print_out_str(' {0}'.format(b))
sys.exit(1)
print_out_str('\nHardware match: {0}'.format(board.board_num))
print_out_str('Socinfo id = {0}, version {1:x}.{2:x}'.format(
socinfo_id, socinfo_version >> 16, socinfo_version & 0xFFFF))
print_out_str('Socinfo build = {0}'.format(socinfo_build_id))
print_out_str(
'Now setting phys_offset to {0:x}'.format(board.phys_offset))
if board.wdog_addr is not None:
print_out_str(
'TZ address: {0:x}'.format(board.wdog_addr))
if self.phys_offset is None:
self.phys_offset = board.phys_offset
self.tz_addr = board.wdog_addr
self.ebi_start = board.ram_start
self.tz_start = board.imem_start
self.hw_id = board.board_num
self.cpu_type = board.cpu
self.imem_fname = board.imem_file_name
if hasattr(board, 'kaslr_addr'):
self.kaslr_addr = board.kaslr_addr
else:
self.kaslr_addr = None
return True
def resolve_virt(self, virt_or_name):
"""Takes a virtual address or variable name, returns a virtual
address
"""
if not isinstance(virt_or_name, basestring):
return virt_or_name
return self.address_of(virt_or_name)
def virt_to_phys(self, virt_or_name):
"""Does a virtual-to-physical address lookup of the virtual address or
variable name."""
if self.minidump:
return minidump_util.minidump_virt_to_phys(self.ebi_files_minidump,self.resolve_virt(virt_or_name))
else:
return self.mmu.virt_to_phys(self.resolve_virt(virt_or_name))
def setup_symbol_tables(self):
stream = os.popen(self.nm_path + ' -n ' + self.vmlinux)
symbols = stream.readlines()
kaslr = 0
if self.kaslr_offset is not None:
kaslr = int(self.kaslr_offset)
for line in symbols:
s = line.split(' ')
if len(s) == 3:
self.lookup_table.append((int(s[0], 16) + kaslr,
s[2].rstrip()))
stream.close()
def address_of(self, symbol):
"""Returns the address of a symbol.
Example:
>>> hex(dump.address_of('linux_banner'))
'0xffffffc000c7a0a8L'
"""
try:
return self.gdbmi.address_of(symbol)
except gdbmi.GdbMIException:
pass
def symbol_at(self, addr):
try:
return self.gdbmi.symbol_at(addr)
except gdbmi.GdbMIException:
pass
def sizeof(self, the_type):
try:
return self.gdbmi.sizeof(the_type)
except gdbmi.GdbMIException:
pass
def array_index(self, addr, the_type, index):
"""Index into the array of type ``the_type`` located at ``addr``.
I.e., given::
int my_arr[3];
my_arr[2] = 42;
You could do the following:
>>> addr = dump.address_of("my_arr")
>>> dump.read_word(dump.array_index(addr, "int", 2))
42
"""
offset = self.gdbmi.sizeof(the_type) * index
return addr + offset
def field_offset(self, the_type, field):
"""Gets the offset of a field from the base of its containing struct.
This can be useful when reading struct fields, although you should
consider using :func:`~read_structure_field` if
you're reading a word-sized value.
Example:
>>> dump.field_offset('struct device', 'bus')
168
"""
try:
return self.gdbmi.field_offset(the_type, field)
except gdbmi.GdbMIException:
pass
def container_of(self, ptr, the_type, member):
"""Like ``container_of`` in the kernel."""
try:
return self.gdbmi.container_of(ptr, the_type, member)
except gdbmi.GdbMIException:
pass
def sibling_field_addr(self, ptr, parent_type, member, sibling):
"""Gets the address of a sibling structure field.
Given the address of some field within a structure, returns the
address of the requested sibling field.
"""
try:
return self.gdbmi.sibling_field_addr(ptr, parent_type, member, sibling)
except gdbmi.GdbMIException:
pass
def unwind_lookup(self, addr, symbol_size=0):
if (addr is None):
return ('(Invalid address)', 0x0)
# modules are not supported so just print out an address
# instead of a confusing symbol
if (addr < self.modules_end):
return ('(No symbol for address {0:x})'.format(addr), 0x0)
low = 0
high = len(self.lookup_table)
# Python now complains about division producing floats
mid = (low + high) >> 1
premid = 0
while(not(addr >= self.lookup_table[mid][0] and addr < self.lookup_table[mid + 1][0])):
if(addr < self.lookup_table[mid][0]):
high = mid - 1
if(addr > self.lookup_table[mid][0]):
low = mid + 1
mid = (high + low) >> 1
if(mid == premid):
return None
if (mid + 1) >= len(self.lookup_table) or mid < 0:
return None
premid = mid
if symbol_size == 0:
return (self.lookup_table[mid][1], addr - self.lookup_table[mid][0])
else:
return (self.lookup_table[mid][1], self.lookup_table[mid + 1][0] - self.lookup_table[mid][0])
def read_physical(self, addr, length):
if self.minidump:
addr_data = minidump_util.read_physical_minidump(
self.ebi_files_minidump, self.ebi_files,self.elffile,
addr, length)
return addr_data
else:
ebi = (-1, -1, -1)
for a in self.ebi_files:
fd, start, end, path = a
if addr >= start and addr <= end:
ebi = a
break
if ebi[0] is -1:
return None
offset = addr - ebi[1]
ebi[0].seek(offset)
a = ebi[0].read(length)
return a
def read_dword(self, addr_or_name, virtual=True, cpu=None):
s = self.read_string(addr_or_name, '<Q', virtual, cpu)
return s[0] if s is not None else None
def read_word(self, addr_or_name, virtual=True, cpu=None):
"""returns a word size (pointer) read from ramdump"""
if self.arm64:
s = self.read_string(addr_or_name, '<Q', virtual, cpu)
else:
s = self.read_string(addr_or_name, '<I', virtual, cpu)
return s[0] if s is not None else None
def read_halfword(self, addr_or_name, virtual=True, cpu=None):
"""returns a value corresponding to half the word size"""
if self.arm64:
s = self.read_string(addr_or_name, '<I', virtual, cpu)
else:
s = self.read_string(addr_or_name, '<H', virtual, cpu)
return s[0] if s is not None else None
def read_byte(self, addr_or_name, virtual=True, cpu=None):
"""Reads a single byte."""
s = self.read_string(addr_or_name, '<B', virtual, cpu)
return s[0] if s is not None else None
def read_bool(self, addr_or_name, virtual=True, cpu=None):
"""Reads a bool."""
s = self.read_string(addr_or_name, '<?', virtual, cpu)
return s[0] if s is not None else None
def read_s64(self, addr_or_name, virtual=True, cpu=None):
"""returns a value guaranteed to be 64 bits"""
s = self.read_string(addr_or_name, '<q', virtual, cpu)
return s[0] if s is not None else None
def read_u64(self, addr_or_name, virtual=True, cpu=None):
"""returns a value guaranteed to be 64 bits"""
s = self.read_string(addr_or_name, '<Q', virtual, cpu)
return s[0] if s is not None else None
def read_s32(self, addr_or_name, virtual=True, cpu=None):
"""returns a value guaranteed to be 32 bits"""
s = self.read_string(addr_or_name, '<i', virtual, cpu)
return s[0] if s is not None else None
def read_u32(self, addr_or_name, virtual=True, cpu=None):
"""returns a value guaranteed to be 32 bits"""
s = self.read_string(addr_or_name, '<I', virtual, cpu)
return s[0] if s is not None else None
def read_int(self, addr_or_name, virtual=True, cpu=None):
"""Alias for :func:`~read_u32`"""
return self.read_u32(addr_or_name, virtual, cpu)
def read_u16(self, addr_or_name, virtual=True, cpu=None):
"""returns a value guaranteed to be 16 bits"""
s = self.read_string(addr_or_name, '<H', virtual, cpu)
return s[0] if s is not None else None
def read_pointer(self, addr_or_name, virtual=True, cpu=None):
"""Reads ``addr_or_name`` as a pointer variable.
The read length is either 32-bit or 64-bit depending on the
architecture. This returns the *value* of the pointer variable
(i.e. the address it contains), not the data it points to.
"""
fn = self.read_u32 if self.sizeof('void *') == 4 else self.read_u64
return fn(addr_or_name, virtual, cpu)
def read_structure_field(self, addr_or_name, struct_name, field):
"""reads a 4 or 8 byte field from a structure"""
size = self.sizeof("(({0} *)0)->{1}".format(struct_name, field))
virt = self.resolve_virt(addr_or_name)
if virt is None or size is None:
return None
if size == 4:
return self.read_u32(virt + self.field_offset(struct_name,
field))
if size == 8:
return self.read_u64(virt + self.field_offset(struct_name,
field))
return None
def read_structure_cstring(self, addr_or_name, struct_name, field,
max_length=100):
"""reads a C string from a structure field. The C string field will be
dereferenced before reading, so it should be a ``char *``, not a
``char []``.
"""
virt = self.resolve_virt(addr_or_name)
cstring_addr = virt + self.field_offset(struct_name, field)
return self.read_cstring(self.read_pointer(cstring_addr), max_length)
def read_cstring(self, addr_or_name, max_length=100, virtual=True,
cpu=None):
"""Reads a C string."""
addr = addr_or_name
if virtual:
if cpu is not None:
pcpu_offset = self.per_cpu_offset(cpu)
addr_or_name = self.resolve_virt(addr_or_name)
addr_or_name += pcpu_offset + self.per_cpu_offset(cpu)
addr = self.virt_to_phys(addr_or_name)
s = self.read_physical(addr, max_length)
if s is not None:
a = s.decode('ascii', 'ignore')
return a.split('\0')[0]
else:
return s
def read_string(self, addr_or_name, format_string, virtual=True, cpu=None):
"""Reads data using a format string.
Reads data from addr_or_name using format_string (which should be a
struct.unpack format).
Returns the tuple returned by struct.unpack.
"""
addr = addr_or_name
per_cpu_string = ''
if virtual:
if cpu is not None:
pcpu_offset = self.per_cpu_offset(cpu)
addr_or_name = self.resolve_virt(addr_or_name)
addr_or_name += pcpu_offset
per_cpu_string = ' with per-cpu offset of ' + hex(pcpu_offset)
addr = self.virt_to_phys(addr_or_name)
s = self.read_physical(addr, struct.calcsize(format_string))
if (s is None) or (s == ''):
return None
return struct.unpack(format_string, s)
def hexdump(self, addr_or_name, length, virtual=True, file_object=None):
"""Returns a string with a hexdump (in the format of ``xxd``).
``length`` is in bytes.
Example (intentionally not in doctest format since it would require
a specific dump to be loaded to pass as a doctest):
>>> print(dump.hexdump('linux_banner', 0x80))
ffffffc000c610a8: 4c69 6e75 7820 7665 7273 696f 6e20 332e Linux version 3.
ffffffc000c610b8: 3138 2e32 302d 6761 3762 3238 6539 2d31 18.20-ga7b28e9-1
ffffffc000c610c8: 3333 3830 2d67 3036 3032 6531 3020 286c 3380-g0602e10 (l
ffffffc000c610d8: 6e78 6275 696c 6440 6162 6169 7431 3532 nxbuild@abait152
ffffffc000c610e8: 2d73 642d 6c6e 7829 2028 6763 6320 7665 -sd-lnx) (gcc ve
ffffffc000c610f8: 7273 696f 6e20 342e 392e 782d 676f 6f67 rsion 4.9.x-goog
ffffffc000c61108: 6c65 2032 3031 3430 3832 3720 2870 7265 le 20140827 (pre
ffffffc000c61118: 7265 6c65 6173 6529 2028 4743 4329 2029 release) (GCC) )
"""
import StringIO
sio = StringIO.StringIO()
address = self.resolve_virt(addr_or_name)
parser_util.xxd(
address,
[self.read_byte(address + i, virtual=virtual) or 0
for i in xrange(length)],
file_object=sio)
ret = sio.getvalue()
sio.close()
return ret
def per_cpu_offset(self, cpu):
per_cpu_offset_addr = self.address_of('__per_cpu_offset')
if per_cpu_offset_addr is None:
return 0
per_cpu_offset_addr_indexed = self.array_index(
per_cpu_offset_addr, 'unsigned long', cpu)
return self.read_word(per_cpu_offset_addr_indexed)
def get_num_cpus(self):
"""Gets the number of CPUs in the system."""
major, minor, patch = self.kernel_version
cpu_present_bits_addr = self.address_of('cpu_present_bits')
cpu_present_bits = self.read_word(cpu_present_bits_addr)
if (major, minor) >= (4, 5):
cpu_present_bits_addr = self.address_of('__cpu_present_mask')
bits_offset = self.field_offset('struct cpumask', 'bits')
cpu_present_bits = self.read_word(cpu_present_bits_addr + bits_offset)
return bin(cpu_present_bits).count('1')
def iter_cpus(self):
"""Returns an iterator over all CPUs in the system.
Example:
>>> list(dump.iter_cpus())
[0, 1, 2, 3]
"""
return xrange(self.get_num_cpus())
def thread_saved_field_common_32(self, task, reg_offset):
thread_info = self.read_word(task + self.field_offset('struct task_struct', 'stack'))
cpu_context_offset = self.field_offset('struct thread_info', 'cpu_context')
val = self.read_word(thread_info + cpu_context_offset + reg_offset)
return val
def thread_saved_field_common_64(self, task, reg_offset):
thread_offset = self.field_offset('struct task_struct', 'thread')
cpu_context_offset = self.field_offset('struct thread_struct', 'cpu_context')
val = self.read_word(task + thread_offset + cpu_context_offset + reg_offset)
return val
def thread_saved_pc(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'pc'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'pc'))
def thread_saved_sp(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'sp'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'sp'))
def thread_saved_fp(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'fp'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'fp'))
class Struct(object):
"""
Helper class to abstract C structs retrieval by providing a map of fields
to functions on how to retrieve these
Given C struct::
struct my_struct {
char label[MAX_STR_SIZE];
u32 number;
void *address;
}
You can abstract as:
>>> var = Struct(ramdump, var_name, struct_name="struct my_struct",
fields={'label': Struct.get_cstring,
'number': Struct.get_u32,
'address': Struct.get_pointer})
>>> var.label
'label string'
>>> var.number
1234
"""
_struct_name = None
_fields = None
def __init__(self, ramdump, base, struct_name=None, fields=None):
"""
:param ram_dump: Reference to the ram dump
:param base: The virtual address or variable name of struct
:param struct_name: Name of the structure, should start with 'struct'.
Ex: 'struct my_struct'
:param fields: Dictionary with key being the element name and value
being a function pointer to method used to retrieve it.
"""
self.ramdump = ramdump
self._base = self.ramdump.resolve_virt(base)
self._data = {}
if struct_name:
self._struct_name = struct_name
if fields:
self._fields = fields
def is_empty(self):
"""
:return: true if struct is empty
"""
return self._base == 0 or self._base is None or self._fields is None
def get_address(self, key):
"""
:param key: struct field name
:return: returns address of the named field within the struct
"""
return self._base + self.ramdump.field_offset(self._struct_name, key)
def get_pointer(self, key):
"""
:param key: struct field name
:return: returns the addressed pointed by field within the struct
example struct::
struct {
void *key;
};
"""
address = self.get_address(key)
return self.ramdump.read_pointer(address)
def get_struct_sizeof(self, key):
"""
:param key: struct field name
:return: returns the size of a field within struct
Given C struct::
struct my_struct {
char key1[10];
u32 key2;
};
You could do:
>>> struct = Struct(ramdump, 0, struct="struct my_struct",
fields={"key1": Struct.get_cstring,
"key2": Struct.get_u32})
>>> struct.get_struct_sizeof(key1)
10
>>> struct.get_struct_sizeof(key2)
4
"""
return self.ramdump.sizeof('((%s *) 0)->%s' % (self._struct_name, key))
def get_cstring(self, key):
"""
:param key: struct field name
:return: returns a string that is contained within struct memory
Example C struct::
struct {
char key[10];
};
"""
address = self.get_address(key)
length = self.get_struct_sizeof(key)
return self.ramdump.read_cstring(address, length)
def get_u32(self, key):
"""
:param key: struct field name
:return: returns a u32 integer within the struct
Example C struct::
struct {
u32 key;
};
"""
address = self.get_address(key)
return self.ramdump.read_u32(address)
def get_array_ptrs(self, key):
"""
:param key: struct field name
:return: returns an array of pointers
Example C struct::
struct {
void *key[4];
};
"""
ptr_size = self.ramdump.sizeof('void *')
length = self.get_struct_sizeof(key) / ptr_size
address = self.get_address(key)
arr = []
for i in range(0, length - 1):
ptr = self.ramdump.read_pointer(address + (ptr_size * i))
arr.append(ptr)
return arr
def __setattr__(self, key, value):
if self._fields and key in self._fields:
raise ValueError(key + "is read-only")
else:
super(Struct, self).__setattr__(key, value)
def __getattr__(self, key):
if not self.is_empty():
if key in self._data:
return self._data[key]
elif key in self._fields:
fn = self._fields[key]
value = fn(self, key)
self._data[key] = value
return value
return None