-
Pratik Patel authored
Add autodump parsing support for DDR sizes greater than 2GB. Change-Id: I9b008d08612f08fdbc9ec486e08fc6b00e7d3357
40ed38f7
ramdump.py 45.33 KiB
# Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 2 and
# only version 2 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
import sys
import re
import os
import struct
import gzip
import functools
import string
from boards import get_supported_boards, get_supported_ids
from tempfile import NamedTemporaryFile
import gdbmi
from print_out import print_out_str
from mmu import Armv7MMU, Armv7LPAEMMU, Armv8MMU
import parser_util
FP = 11
SP = 13
LR = 14
PC = 15
launch_config_str = 'OS=\nID=T32_1000002\nTMP=C:\\TEMP\nSYS=C:\\T32\nHELP=C:\\T32\\pdf\n\nPBI=SIM\nSCREEN=\nFONT=SMALL\nHEADER=Trace32-ScorpionSimulator\nPRINTER=WINDOWS'
# The smem code is very stable and unlikely to go away or be changed.
# Rather than go through the hassel of parsing the id through gdb,
# just hard code it
SMEM_HW_SW_BUILD_ID = 0x89
BUILD_ID_LENGTH = 32
first_mem_file_names = ['EBICS0.BIN',
'EBI1.BIN', 'DDRCS0.BIN', 'ebi1_cs0.bin', 'DDRCS0_0.BIN']
extra_mem_file_names = ['EBI1CS1.BIN', 'DDRCS1.BIN', 'ebi1_cs1.bin', 'DDRCS0_1.BIN', 'DDRCS1_0.BIN', 'DDRCS1_1.BIN']
class RamDump():
class Unwinder ():
class Stackframe ():
def __init__(self, fp, sp, lr, pc):
self.fp = fp
self.sp = sp
self.lr = lr
self.pc = pc
class UnwindCtrlBlock ():
def __init__(self):
self.vrs = 16 * [0]
self.insn = 0
self.entries = -1
self.byte = -1
self.index = 0
def __init__(self, ramdump):
start = ramdump.addr_lookup('__start_unwind_idx')
end = ramdump.addr_lookup('__stop_unwind_idx')
self.ramdump = ramdump
if (start is None) or (end is None):
if ramdump.arm64:
self.unwind_frame = self.unwind_frame_generic64
else:
self.unwind_frame = self.unwind_frame_generic
return None
# addresses
self.unwind_frame = self.unwind_frame_tables
self.start_idx = start
self.stop_idx = end
self.unwind_table = []
i = 0
for addr in range(start, end, 8):
r = ramdump.read_string(addr, '<II')
if r is None:
break
(a, b) = r
self.unwind_table.append((a, b, start + 8 * i))
i += 1
ver = ramdump.version
if re.search('3.0.\d', ver) is not None:
self.search_idx = self.search_idx_3_0
else:
self.search_idx = self.search_idx_3_4
# index into the table
self.origin = self.unwind_find_origin()
def unwind_find_origin(self):
start = 0
stop = len(self.unwind_table)
while (start < stop):
mid = start + ((stop - start) >> 1)
if (self.unwind_table[mid][0] >= 0x40000000):
start = mid + 1
else:
stop = mid
return stop
def unwind_frame_generic64(self, frame, trace=False):
fp = frame.fp
low = frame.sp
mask = (self.ramdump.thread_size) - 1
high = (low + mask) & (~mask)
if (fp < low or fp > high or fp & 0xf):
return
frame.sp = fp + 0x10
frame.fp = self.ramdump.read_word(fp)
frame.pc = self.ramdump.read_word(fp + 8)
return 0
def unwind_frame_generic(self, frame, trace=False):
high = 0
fp = frame.fp
low = frame.sp
mask = (self.ramdump.thread_size) - 1
high = (low + mask) & (~mask) # ALIGN(low, THREAD_SIZE)
# /* check current frame pointer is within bounds */
if (fp < (low + 12) or fp + 4 >= high):
return -1
fp_is_at = self.ramdump.read_word(frame.fp - 12)
sp_is_at = self.ramdump.read_word(frame.fp - 8)
pc_is_at = self.ramdump.read_word(frame.fp - 4)
frame.fp = fp_is_at
frame.sp = sp_is_at
frame.pc = pc_is_at
return 0
def walk_stackframe_generic(self, frame):
while True:
symname = self.ramdump.addr_to_symbol(frame.pc)
print_out_str(symname)
ret = self.unwind_frame_generic(frame)
if ret < 0:
break
def unwind_backtrace_generic(self, sp, fp, pc):
frame = self.Stackframe()
frame.fp = fp
frame.pc = pc
frame.sp = sp
walk_stackframe_generic(frame)
def search_idx_3_4(self, addr):
start = 0
stop = len(self.unwind_table)
orig = addr
if (addr < self.start_idx):
stop = self.origin
else:
start = self.origin
if (start >= stop):
return None
addr = (addr - self.unwind_table[start][2]) & 0x7fffffff
while (start < (stop - 1)):
mid = start + ((stop - start) >> 1)
dif = (self.unwind_table[mid][2]
- self.unwind_table[start][2])
if ((addr - dif) < self.unwind_table[mid][0]):
stop = mid
else:
addr = addr - dif
start = mid
if self.unwind_table[start][0] <= addr:
return self.unwind_table[start]
else:
return None
def search_idx_3_0(self, addr):
first = 0
last = len(self.unwind_table)
while (first < last - 1):
mid = first + ((last - first + 1) >> 1)
if (addr < self.unwind_table[mid][0]):
last = mid
else:
first = mid
return self.unwind_table[first]
def unwind_get_byte(self, ctrl):
if (ctrl.entries <= 0):
print_out_str('unwind: Corrupt unwind table')
return 0
val = self.ramdump.read_word(ctrl.insn)
ret = (val >> (ctrl.byte * 8)) & 0xff
if (ctrl.byte == 0):
ctrl.insn += 4
ctrl.entries -= 1
ctrl.byte = 3
else:
ctrl.byte -= 1
return ret
def unwind_exec_insn(self, ctrl, trace=False):
insn = self.unwind_get_byte(ctrl)
if ((insn & 0xc0) == 0x00):
ctrl.vrs[SP] += ((insn & 0x3f) << 2) + 4
if trace:
print_out_str(
' add {0} to stack'.format(((insn & 0x3f) << 2) + 4))
elif ((insn & 0xc0) == 0x40):
ctrl.vrs[SP] -= ((insn & 0x3f) << 2) + 4
if trace:
print_out_str(
' subtract {0} from stack'.format(((insn & 0x3f) << 2) + 4))
elif ((insn & 0xf0) == 0x80):
vsp = ctrl.vrs[SP]
reg = 4
insn = (insn << 8) | self.unwind_get_byte(ctrl)
mask = insn & 0x0fff
if (mask == 0):
print_out_str("unwind: 'Refuse to unwind' instruction")
return -1
# pop R4-R15 according to mask */
load_sp = mask & (1 << (13 - 4))
while (mask):
if (mask & 1):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if trace:
print_out_str(
' pop r{0} from stack'.format(reg))
if ctrl.vrs[reg] is None:
return -1
vsp += 4
mask >>= 1
reg += 1
if not load_sp:
ctrl.vrs[SP] = vsp
elif ((insn & 0xf0) == 0x90 and (insn & 0x0d) != 0x0d):
if trace:
print_out_str(
' set SP with the value from {0}'.format(insn & 0x0f))
ctrl.vrs[SP] = ctrl.vrs[insn & 0x0f]
elif ((insn & 0xf0) == 0xa0):
vsp = ctrl.vrs[SP]
a = list(range(4, 4 + (insn & 7)))
a.append(4 + (insn & 7))
# pop R4-R[4+bbb] */
for reg in (a):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if trace:
print_out_str(' pop r{0} from stack'.format(reg))
if ctrl.vrs[reg] is None:
return -1
vsp += 4
if (insn & 0x80):
if trace:
print_out_str(' set LR from the stack')
ctrl.vrs[14] = self.ramdump.read_word(vsp)
if ctrl.vrs[14] is None:
return -1
vsp += 4
ctrl.vrs[SP] = vsp
elif (insn == 0xb0):
if trace:
print_out_str(' set pc = lr')
if (ctrl.vrs[PC] == 0):
ctrl.vrs[PC] = ctrl.vrs[LR]
ctrl.entries = 0
elif (insn == 0xb1):
mask = self.unwind_get_byte(ctrl)
vsp = ctrl.vrs[SP]
reg = 0
if (mask == 0 or mask & 0xf0):
print_out_str('unwind: Spare encoding')
return -1
# pop R0-R3 according to mask
while mask:
if (mask & 1):
ctrl.vrs[reg] = self.ramdump.read_word(vsp)
if trace:
print_out_str(
' pop r{0} from stack'.format(reg))
if ctrl.vrs[reg] is None:
return -1
vsp += 4
mask >>= 1
reg += 1
ctrl.vrs[SP] = vsp
elif (insn == 0xb2):
uleb128 = self.unwind_get_byte(ctrl)
if trace:
print_out_str(
' Adjust sp by {0}'.format(0x204 + (uleb128 << 2)))
ctrl.vrs[SP] += 0x204 + (uleb128 << 2)
else:
print_out_str('unwind: Unhandled instruction')
return -1
return 0
def prel31_to_addr(self, addr):
value = self.ramdump.read_word(addr)
# offset = (value << 1) >> 1
# C wants this sign extended. Python doesn't do that.
# Sign extend manually.
if (value & 0x40000000):
offset = value | 0x80000000
else:
offset = value
# This addition relies on integer overflow
# Emulate this behavior
temp = addr + offset
return (temp & 0xffffffff) + ((temp >> 32) & 0xffffffff)
def unwind_frame_tables(self, frame, trace=False):
low = frame.sp
high = ((low + (self.ramdump.thread_size - 1)) & \
~(self.ramdump.thread_size - 1)) + self.ramdump.thread_size
idx = self.search_idx(frame.pc)
if (idx is None):
if trace:
print_out_str("can't find %x" % frame.pc)
return -1
ctrl = self.UnwindCtrlBlock()
ctrl.vrs[FP] = frame.fp
ctrl.vrs[SP] = frame.sp
ctrl.vrs[LR] = frame.lr
ctrl.vrs[PC] = 0
if (idx[1] == 1):
return -1
elif ((idx[1] & 0x80000000) == 0):
ctrl.insn = self.prel31_to_addr(idx[2] + 4)
elif (idx[1] & 0xff000000) == 0x80000000:
ctrl.insn = idx[2] + 4
else:
print_out_str('not supported')
return -1
val = self.ramdump.read_word(ctrl.insn)
if ((val & 0xff000000) == 0x80000000):
ctrl.byte = 2
ctrl.entries = 1
elif ((val & 0xff000000) == 0x81000000):
ctrl.byte = 1
ctrl.entries = 1 + ((val & 0x00ff0000) >> 16)
else:
return -1
while (ctrl.entries > 0):
urc = self.unwind_exec_insn(ctrl, trace)
if (urc < 0):
return urc
if (ctrl.vrs[SP] < low or ctrl.vrs[SP] >= high):
return -1
if (ctrl.vrs[PC] == 0):
ctrl.vrs[PC] = ctrl.vrs[LR]
# check for infinite loop */
if (frame.pc == ctrl.vrs[PC]):
return -1
frame.fp = ctrl.vrs[FP]
frame.sp = ctrl.vrs[SP]
frame.lr = ctrl.vrs[LR]
frame.pc = ctrl.vrs[PC]
return 0
def unwind_backtrace(self, sp, fp, pc, lr, extra_str='', out_file=None, trace=False):
offset = 0
frame = self.Stackframe(fp, sp, lr, pc)
frame.fp = fp
frame.sp = sp
frame.lr = lr
frame.pc = pc
while True:
where = frame.pc
offset = 0
if frame.pc is None:
break
r = self.ramdump.unwind_lookup(frame.pc)
if r is None:
symname = 'UNKNOWN'
offset = 0x0
else:
symname, offset = r
pstring = (
extra_str + '[<{0:x}>] {1}+0x{2:x}'.format(frame.pc, symname, offset))
if out_file:
out_file.write(pstring + '\n')
else:
print_out_str(pstring)
urc = self.unwind_frame(frame, trace)
if urc < 0:
break
def __init__(self, vmlinux_path, nm_path, gdb_path, ebi, file_path, phys_offset, outdir, hw_id=None, hw_version=None, arm64=False,
page_offset=None):
self.ebi_files = []
self.phys_offset = None
self.tz_start = 0
self.ebi_start = 0
self.cpu_type = None
self.hw_id = hw_id
self.hw_version = hw_version
self.offset_table = []
self.vmlinux = vmlinux_path
self.nm_path = nm_path
self.gdb_path = gdb_path
self.outdir = outdir
self.imem_fname = None
self.gdbmi = gdbmi.GdbMI(self.gdb_path, self.vmlinux)
self.gdbmi.open()
self.arm64 = arm64
self.page_offset = 0xc0000000
self.thread_size = 8192
if ebi is not None:
# TODO sanity check to make sure the memory regions don't overlap
for file_path, start, end in ebi:
fd = open(file_path, 'rb')
if not fd:
print_out_str(
'Could not open {0}. Will not be part of dump'.format(file_path))
continue
self.ebi_files.append((fd, start, end, file_path))
else:
if not self.auto_parse(file_path):
return None
if self.ebi_start == 0:
self.ebi_start = self.ebi_files[0][1]
if self.phys_offset is None:
self.get_hw_id()
if phys_offset is not None:
print_out_str(
'[!!!] Phys offset was set to {0:x}'.format(phys_offset))
self.phys_offset = phys_offset
self.lookup_table = []
self.config = []
if self.arm64:
self.page_offset = 0xffffffc000000000
self.thread_size = 16384
if page_offset is not None:
print_out_str(
'[!!!] Page offset was set to {0:x}'.format(page_offset))
self.page_offset = page_offset
self.setup_symbol_tables()
# The address of swapper_pg_dir can be used to determine
# whether or not we're running with LPAE enabled since an
# extra 4k is needed for LPAE. If it's 0x5000 below
# PAGE_OFFSET + TEXT_OFFSET then we know we're using LPAE. For
# non-LPAE it should be 0x4000 below PAGE_OFFSET + TEXT_OFFSET
self.swapper_pg_dir_addr = self.addr_lookup('swapper_pg_dir') - self.page_offset
self.kernel_text_offset = self.addr_lookup('stext') - self.page_offset
pg_dir_size = self.kernel_text_offset - self.swapper_pg_dir_addr
if self.arm64:
print_out_str('Using 64bit MMU')
self.mmu = Armv8MMU(self)
elif pg_dir_size == 0x4000:
print_out_str('Using non-LPAE MMU')
self.mmu = Armv7MMU(self)
elif pg_dir_size == 0x5000:
print_out_str('Using LPAE MMU')
text_offset = 0x8000
pg_dir_size = 0x5000 # 0x4000 for non-LPAE
swapper_pg_dir_addr = self.phys_offset + text_offset - pg_dir_size
# We deduce ttbr1 and ttbcr.t1sz based on the value of
# PAGE_OFFSET. This is based on v7_ttb_setup in
# arch/arm/mm/proc-v7-3level.S:
# * TTBR0/TTBR1 split (PAGE_OFFSET):
# * 0x40000000: T0SZ = 2, T1SZ = 0 (not used)
# * 0x80000000: T0SZ = 0, T1SZ = 1
# * 0xc0000000: T0SZ = 0, T1SZ = 2
if self.page_offset == 0x40000000:
t1sz = 0
elif self.page_offset == 0x80000000:
t1sz = 1
elif self.page_offset == 0xc0000000:
t1sz = 2
# need to fixup ttbr1 since we'll be skipping the
# first-level lookup (see v7_ttb_setup):
# /* PAGE_OFFSET == 0xc0000000, T1SZ == 2 */
# add \ttbr1, \ttbr1, #4096 * (1 + 3) @ only L2 used, skip
# pgd+3*pmd
swapper_pg_dir_addr += (4096 * (1 + 3))
else:
raise Exception(
'Invalid phys_offset for page_table_walk: 0x%x'
% self.page_offset)
self.mmu = Armv7LPAEMMU(self, swapper_pg_dir_addr, t1sz)
else:
print_out_str(
"!!! Couldn't determine whether or not we're using LPAE!")
print_out_str(
'!!! This is a BUG in the parser and should be reported.')
sys.exit(1)
if not self.get_version():
print_out_str('!!! Could not get the Linux version!')
print_out_str(
'!!! Your vmlinux is probably wrong for these dumps')
print_out_str('!!! Exiting now')
sys.exit(1)
if not self.get_config():
print_out_str('!!! Could not get saved configuration')
print_out_str(
'!!! This is really bad and probably indicates RAM corruption')
print_out_str('!!! Some features may be disabled!')
self.unwind = self.Unwinder(self)
def __del__(self):
self.gdbmi.close()
def open_file(self, file_name, mode='wb'):
file_path = os.path.join(self.outdir, file_name)
f = None
try:
f = open(file_path, mode)
except:
print_out_str('Could not open path {0}'.format(file_path))
print_out_str('Do you have write/read permissions on the path?')
sys.exit(1)
return f
def get_config(self):
kconfig_addr = self.addr_lookup('kernel_config_data')
if kconfig_addr is None:
return
kconfig_size = self.sizeof('kernel_config_data')
# size includes magic, offset from it
kconfig_size = kconfig_size - 16 - 1
zconfig = NamedTemporaryFile(mode='wb', delete=False)
# kconfig data starts with magic 8 byte string, go past that
s = self.read_cstring(kconfig_addr, 8)
if s != 'IKCFG_ST':
return
kconfig_addr = kconfig_addr + 8
for i in range(0, kconfig_size):
val = self.read_byte(kconfig_addr + i)
zconfig.write(struct.pack('<B', val))
zconfig.close()
zconfig_in = gzip.open(zconfig.name, 'rb')
try:
t = zconfig_in.readlines()
except:
return False
zconfig_in.close()
os.remove(zconfig.name)
for l in t:
self.config.append(l.rstrip().decode('ascii', 'ignore'))
return True
def is_config_defined(self, config):
s = config + '=y'
return s in self.config
def get_version(self):
banner_addr = self.addr_lookup('linux_banner')
if banner_addr is not None:
# Don't try virt to phys yet, compute manually
banner_addr = banner_addr - self.page_offset + self.phys_offset
b = self.read_cstring(banner_addr, 256, False)
if b is None:
print_out_str('!!! Could not read banner address!')
return False
v = re.search('Linux version (\d{0,2}\.\d{0,2}\.\d{0,2})', b)
if v is None:
print_out_str('!!! Could not match version! {0}'.format(b))
return False
self.version = v.group(1)
print_out_str('Linux Banner: ' + b.rstrip())
print_out_str('version = {0}'.format(self.version))
return True
else:
print_out_str('!!! Could not lookup banner address')
return False
def print_command_line(self):
command_addr = self.addr_lookup('saved_command_line')
if command_addr is not None:
command_addr = self.read_word(command_addr)
b = self.read_cstring(command_addr, 2048)
if b is None:
print_out_str('!!! could not read saved command line address')
return False
print_out_str('Command Line: ' + b)
return True
else:
print_out_str('!!! Could not lookup saved command line address')
return False
def auto_parse(self, file_path):
first_mem_path = None
for f in first_mem_file_names:
test_path = file_path + '/' + f
if os.path.exists(test_path):
first_mem_path = test_path
break
if first_mem_path is None:
print_out_str('!!! Could not open a memory file. I give up')
sys.exit(1)
first_mem = open(first_mem_path, 'rb')
# put some dummy data in for now
self.ebi_files = [(first_mem, 0, 0xffff0000, first_mem_path)]
if not self.get_hw_id(add_offset=False):
return False
first_mem_end = self.ebi_start + os.path.getsize(first_mem_path) - 1
self.ebi_files = [
(first_mem, self.ebi_start, first_mem_end, first_mem_path)]
print_out_str(
'Adding {0} {1:x}--{2:x}'.format(first_mem_path, self.ebi_start, first_mem_end))
self.ebi_start = self.ebi_start + os.path.getsize(first_mem_path)
for f in extra_mem_file_names:
extra_path = file_path + '/' + f
if os.path.exists(extra_path):
extra = open(extra_path, 'rb')
extra_start = self.ebi_start
extra_end = extra_start + os.path.getsize(extra_path) - 1
self.ebi_start = extra_end + 1
print_out_str(
'Adding {0} {1:x}--{2:x}'.format(extra_path, extra_start, extra_end))
self.ebi_files.append(
(extra, extra_start, extra_end, extra_path))
if self.imem_fname is not None:
imemc_path = file_path + '/' + self.imem_fname
if os.path.exists(imemc_path):
imemc = open(imemc_path, 'rb')
imemc_start = self.tz_start
imemc_end = imemc_start + os.path.getsize(imemc_path) - 1
print_out_str(
'Adding {0} {1:x}--{2:x}'.format(imemc_path, imemc_start, imemc_end))
self.ebi_files.append(
(imemc, imemc_start, imemc_end, imemc_path))
return True
# TODO support linux launcher, for when linux T32 actually happens
def create_t32_launcher(self):
out_path = self.outdir
launch_config = open(out_path + '/t32_config.t32', 'wb')
launch_config.write(launch_config_str.encode('ascii', 'ignore'))
launch_config.close()
startup_script = open(out_path + '/t32_startup_script.cmm', 'wb')
# This is a semi hack until A53 support is fully integrated and tested.
# Remove this at the earliest convenience.
if self.arm64:
startup_script.write(
'sys.cpu CORTEXA53\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'sys.cpu {0}\n'.format(self.cpu_type).encode('ascii', 'ignore'))
startup_script.write('sys.up\n'.encode('ascii', 'ignore'))
for ram in self.ebi_files:
ebi_path = os.path.abspath(ram[3])
startup_script.write('data.load.binary {0} 0x{1:x}\n'.format(
ebi_path, ram[1]).encode('ascii', 'ignore'))
if self.arm64:
startup_script.write('Register.Set NS 1\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30201 %Quad 0x000000008007D000\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30202 %Quad 0x00000012B5193519\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A20 %Quad 0x000000FF440C0400\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30A30 %Quad 0x0000000000000000\n'.encode('ascii', 'ignore'))
startup_script.write('Data.Set SPR:0x30100 %Quad 0x0000000034D5D91D\n'.encode('ascii', 'ignore'))
startup_script.write('Register.Set CPSR 0x3C5\n'.encode('ascii', 'ignore'))
startup_script.write('MMU.Delete\n'.encode('ascii', 'ignore'))
startup_script.write('MMU.SCAN PT 0xFFFFFF8000000000--0xFFFFFFFFFFFFFFFF\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.on\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.pt.list 0xffffff8000000000\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'PER.S.F C15:0x2 %L 0x{0:x}\n'.format(self.mmu.ttbr).encode('ascii', 'ignore'))
if isinstance(self.mmu, Armv7LPAEMMU):
# TTBR1. This gets setup once and never change again even if TTBR0
# changes
startup_script.write('PER.S.F C15:0x102 %L 0x{0:x}\n'.format(
self.mmu.ttbr + 0x4000).encode('ascii', 'ignore'))
# TTBCR with EAE and T1SZ set approprately
startup_script.write(
'PER.S.F C15:0x202 %L 0x80030000\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.on\n'.encode('ascii', 'ignore'))
startup_script.write('mmu.scan\n'.encode('ascii', 'ignore'))
startup_script.write(
('data.load.elf ' + os.path.abspath(self.vmlinux) + ' /nocode\n').encode('ascii', 'ignore'))
if self.arm64:
startup_script.write(
'task.config C:\\T32\\demo\\arm64\\kernel\\linux\\linux-3.x\\linux3.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram C:\\T32\\demo\\arm64\\kernel\\linux\\linux-3.x\\linux.men\n'.encode('ascii', 'ignore'))
else:
startup_script.write(
'task.config c:\\t32\\demo\\arm\\kernel\\linux\\linux.t32\n'.encode('ascii', 'ignore'))
startup_script.write(
'menu.reprogram c:\\t32\\demo\\arm\\kernel\\linux\\linux.men\n'.encode('ascii', 'ignore'))
startup_script.write('task.dtask\n'.encode('ascii', 'ignore'))
startup_script.write(
'v.v %ASCII %STRING linux_banner\n'.encode('ascii', 'ignore'))
if os.path.exists(out_path + '/regs_panic.cmm'):
startup_script.write(
'do {0}\n'.format(out_path + '/regs_panic.cmm').encode('ascii', 'ignore'))
elif os.path.exists(out_path + '/core0_regs.cmm'):
startup_script.write(
'do {0}\n'.format(out_path + '/core0_regs.cmm').encode('ascii', 'ignore'))
startup_script.close()
t32_bat = open(out_path + '/launch_t32.bat', 'wb')
if self.arm64:
t32_binary = 'C:\\T32\\bin\\windows64\\t32MARM64.exe'
elif self.hw_id == 8916:
t32_binary = 'C:\\T32\\bin\\windows64\\t32MARM.exe'
else:
t32_binary = 'c:\\t32\\t32MARM.exe'
t32_bat.write(('start '+ t32_binary + ' -c ' + out_path + '/t32_config.t32, ' +
out_path + '/t32_startup_script.cmm').encode('ascii', 'ignore'))
t32_bat.close()
print_out_str(
'--- Created a T32 Simulator launcher (run {0}/launch_t32.bat)'.format(out_path))
def read_tz_offset(self):
if self.tz_addr == 0:
print_out_str(
'No TZ address was given, cannot read the magic value!')
return None
else:
return self.read_word(self.tz_addr, False)
def get_hw_id(self, add_offset=True):
heap_toc_offset = self.field_offset('struct smem_shared', 'heap_toc')
if heap_toc_offset is None:
print_out_str(
'!!!! Could not get a necessary offset for auto detection!')
print_out_str(
'!!!! Please check the gdb path which is used for offsets!')
print_out_str('!!!! Also check that the vmlinux is not stripped')
print_out_str('!!!! Exiting...')
sys.exit(1)
smem_heap_entry_size = self.sizeof('struct smem_heap_entry')
offset_offset = self.field_offset('struct smem_heap_entry', 'offset')
socinfo_format = -1
socinfo_id = -1
socinfo_version = 0
socinfo_build_id = 'DUMMY'
chosen_board = None
boards = get_supported_boards()
if (self.hw_id is None):
for board in boards:
trace = board.trace_soc
if trace:
print_out_str('board_num = {0}'.format(board.board_num))
print_out_str('smem_addr = {0:x}'.format(board.smem_addr))
socinfo_start_addr = board.smem_addr + heap_toc_offset + smem_heap_entry_size * SMEM_HW_SW_BUILD_ID + offset_offset
if add_offset:
socinfo_start_addr += board.ram_start
soc_start = self.read_int(socinfo_start_addr, False)
if trace is True:
print_out_str('Read from {0:x}'.format(socinfo_start_addr))
if soc_start is None:
print_out_str('Result is None! Not this!')
else:
print_out_str('soc_start {0:x}'.format(soc_start))
if soc_start is None:
continue
socinfo_start = board.smem_addr + soc_start
if add_offset:
socinfo_start += board.ram_start
if trace:
print_out_str('socinfo_start {0:x}'.format(socinfo_start))
socinfo_id = self.read_int(socinfo_start + 4, False)
if trace:
print_out_str('socinfo_id = {0} check against {1}'.format(socinfo_id, board.socid))
if socinfo_id != board.socid:
continue
socinfo_format = self.read_int(socinfo_start, False)
socinfo_version = self.read_int(socinfo_start + 8, False)
socinfo_build_id = self.read_cstring(
socinfo_start + 12, BUILD_ID_LENGTH, virtual=False)
chosen_board = board
break
if chosen_board is None:
print_out_str('!!!! Could not find hardware')
print_out_str("!!!! The SMEM didn't match anything")
print_out_str(
'!!!! You can use --force-hardware to use a specific set of values')
sys.exit(1)
else:
for board in boards:
if self.hw_id == board.board_num:
print_out_str(
'!!! Hardware id found! The socinfo values given are bogus')
print_out_str('!!! Proceed with caution!')
chosen_board = board
break
if chosen_board is None:
print_out_str(
'!!! A bogus hardware id was specified: {0}'.format(self.hw_id))
print_out_str('!!! Supported ids:')
for b in get_supported_ids():
print_out_str(' {0}'.format(b))
sys.exit(1)
print_out_str('\nHardware match: {0}'.format(board.board_num))
print_out_str('Socinfo id = {0}, version {1:x}.{2:x}'.format(
socinfo_id, socinfo_version >> 16, socinfo_version & 0xFFFF))
print_out_str('Socinfo build = {0}'.format(socinfo_build_id))
print_out_str(
'Now setting phys_offset to {0:x}'.format(board.phys_offset))
if board.wdog_addr is not None:
print_out_str(
'TZ address: {0:x}'.format(board.wdog_addr))
self.phys_offset = board.phys_offset
self.tz_addr = board.wdog_addr
self.ebi_start = board.ram_start
self.tz_start = board.imem_start
self.hw_id = board.board_num
self.cpu_type = board.cpu
self.imem_fname = board.imem_file_name
return True
def virt_to_phys(self, virt):
if isinstance(virt, basestring):
virt = self.addr_lookup(virt)
if virt is None:
return
return self.mmu.virt_to_phys(virt)
def setup_symbol_tables(self):
stream = os.popen(self.nm_path + ' -n ' + self.vmlinux)
symbols = stream.readlines()
for line in symbols:
s = line.split(' ')
if len(s) == 3:
self.lookup_table.append((int(s[0], 16), s[2].rstrip()))
stream.close()
def addr_lookup(self, symbol):
try:
return self.gdbmi.address_of(symbol)
except gdbmi.GdbMIException:
pass
def symbol_lookup(self, addr):
try:
return self.gdbmi.symbol_at(addr).symbol
except gdbmi.GdbMIException:
pass
def sizeof(self, the_type):
try:
return self.gdbmi.sizeof(the_type)
except gdbmi.GdbMIException:
pass
def array_index(self, addr, the_type, index):
"""Index into the array of type `the_type' located at `addr'.
I.e.:
Given:
int my_arr[3];
my_arr[2] = 42;
The following:
my_arr_addr = dump.addr_lookup("my_arr")
dump.read_word(dump.array_index(my_arr_addr, "int", 2))
will return 42.
"""
offset = self.gdbmi.sizeof(the_type) * index
return addr + offset
def field_offset(self, the_type, field):
try:
return self.gdbmi.field_offset(the_type, field)
except gdbmi.GdbMIException:
pass
def container_of(self, ptr, the_type, member):
try:
return self.gdbmi.container_of(ptr, the_type, member)
except gdbmi.GdbMIException:
pass
def sibling_field_addr(self, ptr, parent_type, member, sibling):
try:
return self.gdbmi.sibling_field_addr(ptr, parent_type, member, sibling)
except gdbmi.GdbMIException:
pass
def unwind_lookup(self, addr, symbol_size=0):
if (addr is None):
return ('(Invalid address)', 0x0)
# modules are not supported so just print out an address
# instead of a confusing symbol
if (addr < self.page_offset):
return ('(No symbol for address {0:x})'.format(addr), 0x0)
low = 0
high = len(self.lookup_table)
# Python now complains about division producing floats
mid = (low + high) >> 1
premid = 0
while(not(addr >= self.lookup_table[mid][0] and addr < self.lookup_table[mid + 1][0])):
if(addr < self.lookup_table[mid][0]):
high = mid - 1
if(addr > self.lookup_table[mid][0]):
low = mid + 1
mid = (high + low) >> 1
if(mid == premid):
return None
if (mid + 1) >= len(self.lookup_table) or mid < 0:
return None
premid = mid
if symbol_size == 0:
return (self.lookup_table[mid][1], addr - self.lookup_table[mid][0])
else:
return (self.lookup_table[mid][1], self.lookup_table[mid + 1][0] - self.lookup_table[mid][0])
def read_physical(self, addr, length, trace=False):
ebi = (-1, -1, -1)
for a in self.ebi_files:
fd, start, end, path = a
if addr >= start and addr <= end:
ebi = a
break
if ebi[0] is -1:
if trace:
if addr is None:
print_out_str('None was passed to read_physical')
else:
print_out_str('addr {0:x} out of bounds'.format(addr))
return None
if trace:
print_out_str('reading from {0}'.format(ebi[0]))
print_out_str('start = {0:x}'.format(ebi[1]))
print_out_str('end = {0:x}'.format(ebi[2]))
print_out_str('length = {0:x}'.format(length))
offset = addr - ebi[1]
if trace:
print_out_str('offset = {0:x}'.format(offset))
ebi[0].seek(offset)
a = ebi[0].read(length)
if trace:
print_out_str('result = {0}'.format(parser_util.cleanupString(a)))
print_out_str('lenght = {0}'.format(len(a)))
return a
def read_dword(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
s = self.read_string(address, '<Q', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
# returns a word size (pointer) read from ramdump
def read_word(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
if self.arm64:
s = self.read_string(address, '<Q', virtual, trace, cpu)
else:
s = self.read_string(address, '<I', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
# returns a value corresponding to half the word size
def read_halfword(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
if self.arm64:
s = self.read_string(address, '<I', virtual, trace, cpu)
else:
s = self.read_string(address, '<H', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
def read_byte(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
s = self.read_string(address, '<B', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
# returns a value guaranteed to be 64 bits
def read_u64(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
s = self.read_string(address, '<Q', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
# returns a value guaranteed to be 32 bits
def read_u32(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
s = self.read_string(address, '<I', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
def read_int(self, address, virtual=True, trace=False, cpu=None):
return self.read_u32(address, virtual, trace, cpu)
# returns a value guaranteed to be 16 bits
def read_u16(self, address, virtual=True, trace=False, cpu=None):
if trace:
print_out_str('reading {0:x}'.format(address))
s = self.read_string(address, '<H', virtual, trace, cpu)
if s is None:
return None
else:
return s[0]
# reads a 4 or 8 byte field from a structure
def read_structure_field(self, address, struct_name, field):
size = self.sizeof("(({0} *)0)->{1}".format(struct_name, field))
if size == 4:
return self.read_u32(address + self.field_offset(struct_name, field))
if size == 8:
return self.read_u64(address + self.field_offset(struct_name, field))
return None
def read_cstring(self, address, max_length, virtual=True, cpu=None, trace=False):
addr = address
if virtual:
if cpu is not None:
address += pcpu_offset + self.per_cpu_offset(cpu)
addr = self.virt_to_phys(address)
if trace:
if address is None:
print_out_str('None was passed as address')
elif addr is None:
print_out_str('virt to phys failed on {0:x}'.format(address))
else:
print_out_str('addr {0:x} -> {1:x}'.format(address, addr))
s = self.read_physical(addr, max_length, trace)
if s is not None:
a = s.decode('ascii', 'ignore')
return a.split('\0')[0]
else:
return s
# returns a tuple of the result from reading from the specified fromat string
# return None on failure
def read_string(self, address, format_string, virtual=True, trace=False, cpu=None):
addr = address
per_cpu_string = ''
if virtual:
if cpu is not None:
pcpu_offset = self.per_cpu_offset(cpu)
address += pcpu_offset
per_cpu_string = ' with per-cpu offset of ' + hex(pcpu_offset)
addr = self.virt_to_phys(address)
if trace:
if addr is not None:
print_out_str('reading from phys {0:x}{1}'.format(addr,
per_cpu_string))
s = self.read_physical(addr, struct.calcsize(format_string), trace)
if (s is None) or (s == ''):
if trace and addr is not None:
print_out_str(
'address {0:x} failed hard core (v {1} t{2})'.format(addr, virtual, trace))
return None
return struct.unpack(format_string, s)
def hexdump(self, address, length, virtual=True, file_object=None):
"""Does a hexdump (in the format of `xxd'). `length' is in bytes. If
given, will write to `file_object', otherwise will write to
stdout.
"""
parser_util.xxd(
address,
[self.read_byte(address + i, virtual=virtual) or 0
for i in xrange(length)],
file_object=file_object)
def per_cpu_offset(self, cpu):
per_cpu_offset_addr = self.addr_lookup('__per_cpu_offset')
if per_cpu_offset_addr is None:
return 0
per_cpu_offset_addr_indexed = self.array_index(
per_cpu_offset_addr, 'unsigned long', cpu)
return self.read_word(per_cpu_offset_addr_indexed)
def get_num_cpus(self):
cpu_present_bits_addr = self.addr_lookup('cpu_present_bits')
cpu_present_bits = self.read_word(cpu_present_bits_addr)
return bin(cpu_present_bits).count('1')
def iter_cpus(self):
return xrange(self.get_num_cpus())
def thread_saved_field_common_32(self, task, reg_offset):
thread_info = self.read_word(task + self.field_offset('struct task_struct', 'stack'))
cpu_context_offset = self.field_offset('struct thread_info', 'cpu_context')
val = self.read_word(thread_info + cpu_context_offset + reg_offset)
return val
def thread_saved_field_common_64(self, task, reg_offset):
thread_offset = self.field_offset('struct task_struct', 'thread')
cpu_context_offset = self.field_offset('struct thread_struct', 'cpu_context')
val = self.read_word(task + thread_offset + cpu_context_offset + reg_offset)
return val
def thread_saved_pc(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'pc'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'pc'))
def thread_saved_sp(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'sp'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'sp'))
def thread_saved_fp(self, task):
if self.arm64:
return self.thread_saved_field_common_64(task, self.field_offset('struct cpu_context', 'fp'))
else:
return self.thread_saved_field_common_32(task, self.field_offset('struct cpu_context_save', 'fp'))